Quadratic Unipotent Blocks in General Linear, Unitary and Symplectic Groups
نویسندگان
چکیده
An irreducible ordinary character of a finite reductive group is called quadratic unipotent if it corresponds under Jordan decomposition to a semisimple element s in a dual group such that s = 1. We prove that there is a bijection between, on the one hand the set of quadratic unipotent characters of GL(n, q) or U(n, q) for all n ≥ 0 and on the other hand, the set of quadratic unipotent characters of Sp(2n, q) for all n ≥ 0. We then extend this correspondence to `-blocks for certain
منابع مشابه
A note on perfect isometries between finite general linear and unitary groups at unitary primes
Let q be a power of a prime, l a prime not dividing q, d a positive integer coprime to both l and the multiplicative order of q mod l and n a positive integer. A. Watanabe proved that there is a perfect isometry between the principal l−blocks of GLn(q) and GLn(q ) where the correspondence of characters is give by Shintani descent. In the same paper Watanabe also prove that if l and q are odd an...
متن کاملSupercharacters of Unipotent Groups Defined by Involutions (extended Abstract)
We construct supercharacter theories of finite unipotent groups in the orthogonal, symplectic and unitary types. Our method utilizes group actions in a manner analogous to that of Diaconis and Isaacs in their construction of supercharacters of algebra groups. The resulting supercharacter theories agree with those of André and Neto in the case of the unipotent orthogonal and symplectic matrices ...
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملThe Orbit Method for the Jacobi Group
g∗ −→ g, λ 7→ Xλ characterized by λ(Y ) =< Xλ, Y >, Y ∈ g. Therefore the coadjoint G-orbits in g∗ may be identified with adjoint G-orbits in g. The philosophy of the orbit method says that we may attach the irreducible unitary representations of G to the coadjoint orbits in g∗. Historically the orbit method that was first initiated by A.A. Kirillov (cf. [K]) early in the 1960s in a real nilpote...
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012